链接:
题意:告诉n个点坐标,m条边表示两个点之间有路。从1点開始建立一个有向图最小生成树。
朱刘算法模板题
========================== 切割线之下摘自的blog==================================================
最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T。而且T中全部边的总权值最小。最小树形图的第一个算法是 1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。
推断是否存在树形图的方法非常easy,仅仅须要以v为根作一次图的遍历就能够了,所以以下的 算法中不再考虑树形图不存在的情况。
在全部操作開始之前,我们须要把图中全部的自环全都清除。非常明显,自环是不可能在不论什么一个树形图上的。仅仅有进 行了这步操作,总算法复杂度才真正能保证是O(VE)。
首先为除根之外的每一个点选定一条入边,这条入边一定要是全部入边中最小的。
如今全部的最小 入边都选择出来了。假设这个入边集不存在有向环的话,我们能够证明这个集合就是该图的最小树形图。这个证明并非非常难。假设存在有向环的话,我们就要将这 个有向环所称一个人工顶点。同一时候改变图中边的权。假设某点u在该环上。并设这个环中指向u的边权是in[u]。那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,当中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边。为什么入边的权要减去in[u],这个后面会解释。在这里先给出算法的步骤。然后能够证明,新图中最小树形图的权加上旧图中被收缩 的那个环的权和,就是原图中最小树形图的权。
上面结论也不做证明了。如今根据上面的结论,说明一下为什么出边的权不变,入边的权要减去in [u]。对于新图中的最小树形图T,设指向人工节点的边为e。
将人工节点展开以后,e指向了一个环。
如果原先e是指向u的,这个时候我们将环上指向u的边 in[u]删除,这样就得到了原图中的一个树形图。我们会发现,如果新图中e的权w'(e)是原图中e的权w(e)减去in[u]权的话,那么在我们删除 掉in[u],而且将e恢复为原图状态的时候,这个树形图的权仍然是新图树形图的权加环的权,而这个权值正是最小树形图的权值。所以在展开节点之后,我们 得到的仍然是最小树形图。
逐步展开全部的人工节点,就会得到初始图的最小树形图了。
假设实现得非常聪明的话。能够达到找最小入边O(E),找环 O(V),收缩O(E)。当中在找环O(V)这里须要一点技巧。这样每次收缩的复杂度是O(E),然后最多会收缩几次呢?因为我们一開始已经拿掉了全部的 自环,我门能够知道每一个环至少包括2个点。收缩成1个点之后。总点数降低了至少1。
当整个图收缩到仅仅有1个点的时候,最小树形图就不不用求了。所以我们最 多仅仅会进行V-1次的收缩。所以总得复杂度自然是O(VE)了。由此可见。假设一開始不除去自环的话。理论复杂度会和自环的数目有关。
======================== 切割线之上摘自的blog=====================================================
简单的说就是除源点外每一个点选一条权值最小的入边,假设存在环则说明还存在多余的边,把成环的点缩成一个点再进行一遍生成树,直到没有环。
朱刘算法模板,顶点下标从0開始
/*最小树形图图模版-朱刘算法模版说明:点标号必须0-(N-1) 必须去除到自身的点(到自身的边的边权赋无限大)*/#include#include #include #include #include #include #include #include #include #include